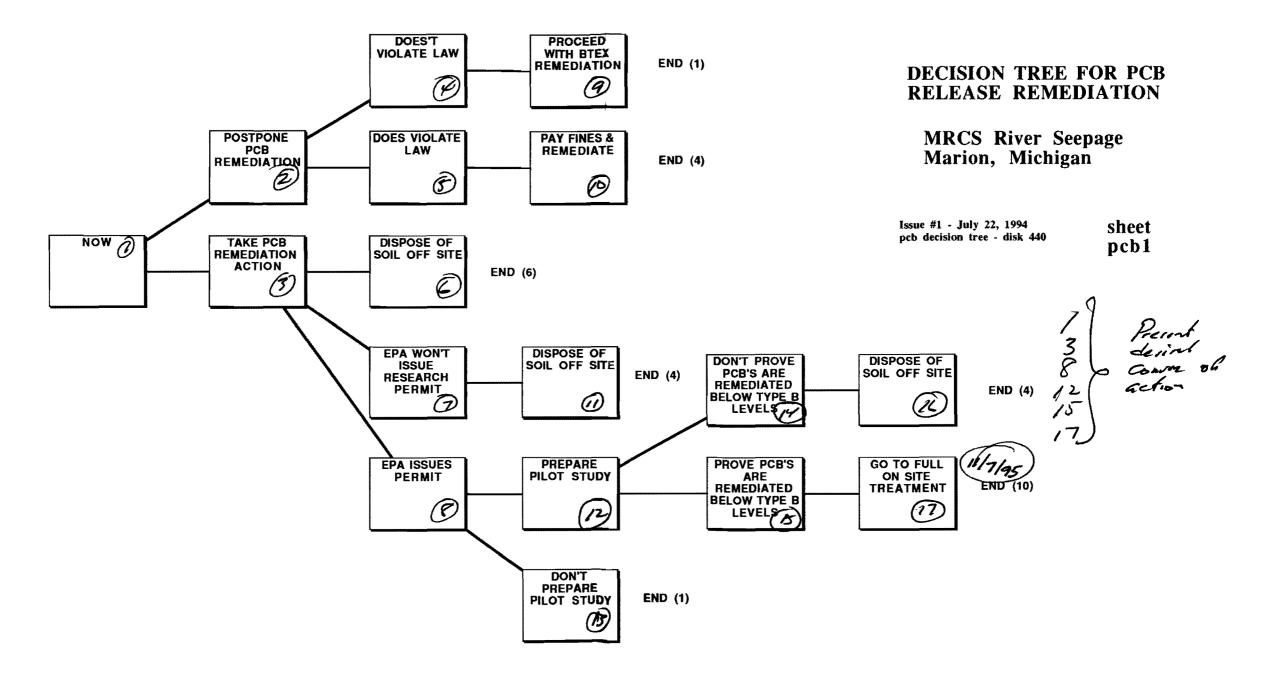
SME MRCS River Stepage Marion, Michigan

IV. Date of meeting - Monday, August 1, 1994 - 2:02:04 PM

- A. Those attending
 - 1. Larry Shook, P. E. Project Engineer SME
 - 2. Ralph J. Stephenson P. E. Consultant
- B. Agenda
 - 1. Prepare guidelines for planning, monitoring and managing project
 - 2. Review network model needs for planning, monitoring, and managing
- C. General notes
 - 1. Guidelines for planning and managing the project
 - a) Basic planning and managing document is the network and monitoring plan.
 - (1) Should be explained in detail to those who must use it.
 - (a) Items needed for discussion
 - i) Network models
 - (1) Issue #4
 - (2) Phase 1 near term
 - (3) Phase 1 immediate
 - (4) Phase 2 long term
 - ii) Translations
 - (1) Responsibilities for each activity
 - (a) D Who actually does the job
 - (b) H Who is responsible for having the job done in accordance with the agreed upon plan of work.
 - (2) Details of each activity
 - (a) Activity 2 Prepare pilot study work plan
 - i) Estimated duration 10 working days
 - ii) Actions included
 - (1) Outline of methods and means to perform the pilot study
 - (2) List of equipment required
 - (3) Parameters by which to measure the activity.
 - iii) Responsibilties
 - (1) H LWS
 - (2) D JMP and CKD
 - (b) etc.
 - (3) Bar charts
 - (4) Narrative data runs of dates
 - (5) Resource tabulations disciplines, hours and costs task by task needed as discussion starting point with CKD.
 - (6) Cash flow curves early starts only and if time permits.
 - (b) CKD
 - i) Explain the following
 - (1) How the logic was derived.
 - (2) How the durations were assigned.
 - (3) How the resources were assigned.
 - (4) How revisions can be made if needed.
 - (5) Proposed method of monitoring.
 - (a) Will formally monitor the project bi weekly.

Ralph Stephenson, P. E. **Consulting Engineer**


New filder plane.

SME MRCS River Seepage Marion, Michigan

.

Ralph Stephenson, P. E. Consulting Engineer

- (b) Each monitioring will result in a monitoring report.
- (c) Reports will be sent to
 - i) CKD
 - ii) REZ
 - iii) KWK
- ii) Discussion questions
 - (1) What are the revisions she would like to make?
 - (2) What resources are available?
 - (3) How do I requisition resources?
 - (4) Who should brief others working on the project as to the plan of work and details of the monitoring? - LWS to determine with CKD.
- (c) Others involved may or may not be at meeting
 - i) JMP
 - ii) DLD
 - iii) REZ
- 2. Activities LWS must accomplish by August 8, 1994
 - a) <u>A1</u> Prepare pilot study work plan task #02
 - (1) 8 hours product is a written report to guide work up to conduct pilot test task #13
 - b) <u>A2</u> Purchase compressor, blower, & filter system activity #09
 - (1) 6 hours after consultant provides design and specification.
 - c) <u>A3</u> Complete prepare logic, durations and per day cost networks for: (8 hours + 2 hours printing and assembly)
 - (1) Phase 1 near term
 - (2) Phase 1 immediate
 - (3) Phase 2 long term
 - d) A4 Have briefing discussions with CKD
 - (1) CKD 2 hours + 3 hours travel
 - e) <u>B1</u> Prepare change order for PCB release project
 - (1) 3 hours to draft, CPCL review, final and send.
 - f) B2 Have briefing discussions with REZ
 - (1) REZ 1 hour + 3 hour travel
 - g) Total = 36 hours

.

94:32

SME MRCS River Seepage Marion, Michigan

Ralph Stephenson, P. E. Consulting Engineer

SME - MRCS River Seepage - disk 440

I. Date of meeting - Tuesday, July 12, 1994 - 12:28:22 PM

- II. Those attending
 - A. Larry Shook, P. E. Project Engineer SME
 - B. Robert Zayko, P. E. Vice President SME
 - C. Ralph J. Stephenson P. E. Consultant

III. Those involved

- A. Soils & Materials, Inc.
 - 1. Brian F. Burke Project Geologist SME Lansing, Michigan
 - 2. Darin Duesenberrry Associate Engineer SME- Livonia, Michigan
 - 3. Cheryl A. Kerhres-Dietrich, CGWP Senior Consultant SME Livonia, Michigan
 - 4. Tom Pete Senior Consultant SME Lansing, Michigan
 - 5. Jeffery Pruitt Senior Project Consultant SME- Livonia, Michigan
 - 6. Larry Shook, P. E. Project Engineer SME Bay City, Michigan
 - 7. Robert Zayko, P. E. Vice President SME Lansing, Michigan
- B. Billings & Associates SVVS Consultants
 - 1. Gail Billings Principal
 - 2. Jeff Billings Principal
 - 3. Brad Billings Principal
 - 4. (Son) Billings ?
 - 5. Scott Griswold ?
- C. Michigan Tech MTU Houghton, Michigan
 - 1. Neil Hutzler, phD, P. E. consultant soil vapor & air sparging
 - 2. James Mehlcic phD, P. E. consultant bioremediation
- D. Consumers Power
 - 1. David Olsen, P. E. Technical contact in Jackson, Michigan
 - 2. Bill Voight Lab supervison Jackson, Michigan
- E. Michigan Gas Storage Company
 - 1. Ted Wojcik MRCS site supervisor Marion, Michigan
- F. Michigan Department of Natural Resources
 - 1. Janice Adams Project Manager Grayling, Michigan

IV. General notes

A. If phase 2, near term work is successful it may obviate the need for phase 2, long term.

V. Glossary of terms

- A. Remediation
- B. Plume
- C. BTEX

Benzene, toluene, ethyl benzene, xylenes - benzene ringed component - volatile aromatics.

- D. Gas chromatograph
- E. Formation

A soils condition.

VI. Abbreviations

- A. CGWP Certified Ground Water Professional
- B. GC Gas chromatograph
- C. BTEX Benzene, toluene, ethyl benzene, xylenes Benzene ringed component - volatile aromatics.
- D. CPCo Consumers Power

page 1 of 5

date printed: Tuesday, July 12, 1994

c

- E. MGSCo Michigan Gas Storage Company
- F. MDNR Michigan Department of Natural Resources
- G. SVVS Sub surface vapor ventilation system

VII. General project characteristics

- A. Fee \$3,000,000
- B. General scope of work
 - 1. Stages of work
 - a) <u>Phase 1</u> Near term BFB project geologist in charge in Lansing reports to LWS on this project.
 - (1) Maintenance and operation of existing ground water pump and treat system.
 - b) <u>Phase 2</u> Near term LWS project manager in charge in Bay City reports to REZ on this project - will be a pilot step to provide guidelines to the long term remediation action.
 - (1) Source area remediation.
 - c) <u>Phase 2</u> Long term LWS project manager in charge in Bay City reports to REZ on this project
 - (1) Plume area remediation.
 - 2. Length of project 5 years or less.

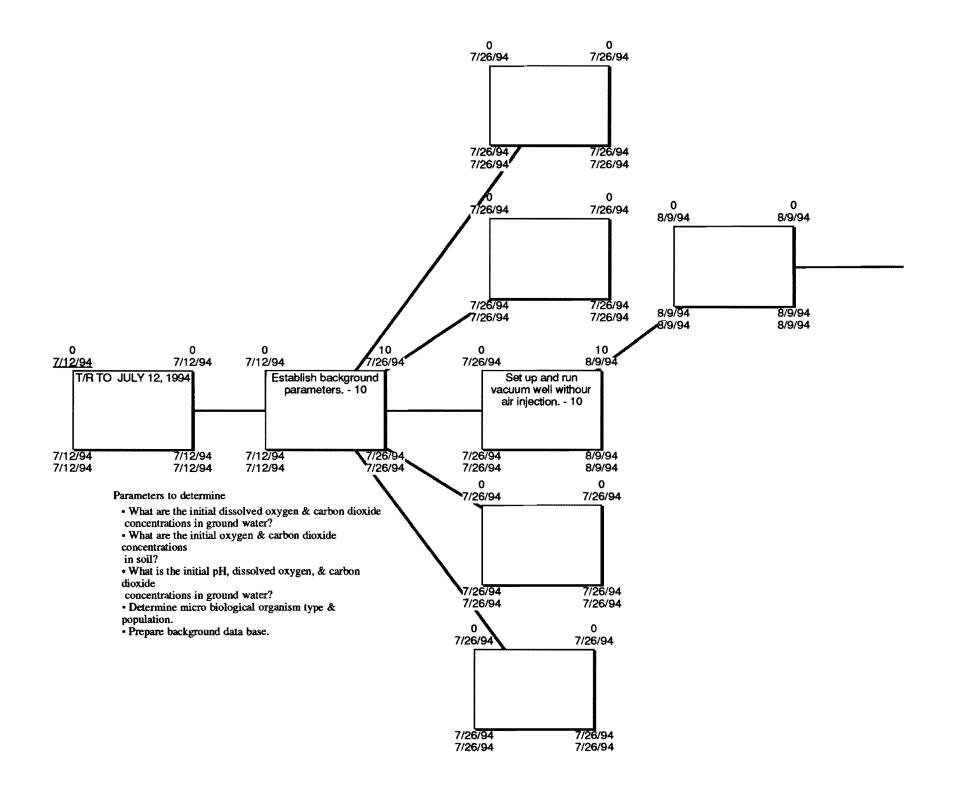
VIII. Laundry lists

- A. <u>Phase 1</u> Near term Maintenance and operation of existing ground water pump and treat system
 - 1. This set of activities is reasonably well established and will be diagrammed later.
- B. <u>Phase 2</u> Near term Source area remediation will be a pilot step to provide guidelines to the long term remediation action.
 - 1. Define and report on vertical and horizontal extent of contamination
 - a) Take soil samples complete
 - b) Take ground water samples complete
 - c) Test soil and ground water samples for BTEX complete
 - d) Analyze data and prepare recommendations for source area remediation. complete
 - e) Publish first draft of source area remediation report complete
 - (1) Consumers Power
 - (2) Michigan Gas Storage Company
 - f) Incorporate comments into first draft of source area remediation report and publish
 - final draft. currently in progress.
 - (1) Consumers Power
 - (2) Michigan Gas Storage Company
 - (3) Michigan Department of Natural Resources
 - 2. Design pilot study for source area remediation.
 - a) Prepare pilot study work plan.
 - (1) Define scope of work.
 - (2) Set performance means and methods.
 - (a) How to take samples.
 - (b) How to analyze data.
 - (c) How to perform tests.
 - (d) Etc.
 - (3) Prepare pilot study work program
 - (a) Define schematic concept.
 - (b) Make preliminary estimates.

- (c) Prepare options analyses.
- (d) Etc.
- (4) Prepare a plan and schedule for work inculded in scope of work.
- (5) Etc.
- b) Prepare design documents.
 - (1) Prepare construction working drawings
 - (2) Prepare construction specifications.
 - (3) Etc.
- 3. Construct facilities to satisfy pilot study work plan.
 - a) Procure materials and equipment.
 - b) Solicit and receive construction proposals
 - c) Award contracts.
 - d) Mobilize and move on site.
 - (1) Move SVVS trailer on site and connect.
 - (2) Move drill rig and crew on site.
 - (3) Move geologist on site.
 - (4) Move field gas chromatograph onto site.
 - e) Construct facilities
 - (1) Fabricate and assemble mobile SVVS (sub surface vapor ventilation system) probably in Plymouth and Bay City.
 - (2) Install extractor/injector nest.
 - (3) Install monitoring point wells.
 - (4) Install PVC vacuum and pressure piping
 - (5) Etc.
- 4. Perform pilot tests of SVVS to determine formation characteristics.
 - a) Establish background parameters.
 - (1) What are the initial BTEX concentration in soil and ground water?
 - (2) What are the initial dissolved oxygen & carbon dioxide concentrations in ground water?
 - (3) What are the initial oxygen & carbon dioxide concentrations in soil?
 - (4) What is the initial pH, dissolved oxygen, & carbon dioxide concentrations in ground water?
 - (5) Determine micro biological organism type & population.
 - (6) Prepare background data base.
 - (7) Etc.
 - b) Run pilot tests of SVVS
 - (1) Set up and run vacuum well withour air injection.
 - (a) Monitor BTEX, oxygen, carbon dioxide flow rate vacuum pressure above water table.
 - (b) Etc.
 - (2) Set up and run vacuum well with air injection.
 - (a) Monitor pH, BTEX, oxygen, carbon dioxide flow rate vacuum pressure & positive pressure above & below water table.
 - (b) Etc.
 - (3) Determine micro biological organism type & population.
 - (4) Establish optimum well location and spacing characteristics.
 - (5) Prepare and publish report documenting SVVS pilot test results.
 - (a) Publish first draft of SVVS pilot test report i) Consumers Power

SME MRCS River Seepage Marion, Michigan

Ralph Stephenson, P. E. Consulting Engineer

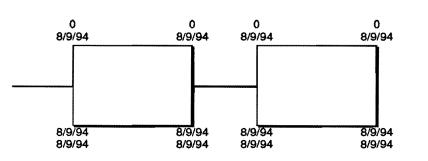

- ii) Michigan Gas Storage Company
- (b) Incorporate comments into first draft of SVVS pilot test report and publish final draft.
 - i) Consumers Power
 - ii) Michigan Gas Storage Company
 - iii) Michigan Department of Natural Resources
- (6) Etc.
- C. Phase 2 Long term Plume area remediation
 - 1. Design
 - a) Prepare SVVS work plan.
 - b) Prepare design documents.
 - 2. Construct facilities to satisfy SVVS work plan.
 - a) Procure materials and equipment.
 - b) Solicit and receive construction proposals
 - c) Award contracts.
 - d) Mobilize and move on site.
 - (1) Move SVVS trailer on site and connect.
 - (2) Move drill rig and crew on site.
 - (3) Move geologist on site.
 - (4) Move field gas chromatograph onto site.
 - e) Construct facilities
 - (1) Construct SVVS (sub surface vapor ventilation system) vapor control unit building. (15' to 20', 20' × 30')
 - (a) Construct building foundations
 - (b) Erect and plumb metal building & close in.
 - (c) Install underground utilities.
 - (d) Construct slab on grade.
 - (e) Install mechanical and electrical interior work.
 - (f) Install SVVS unit and hook up.
 - i) Blowers.
 - ii) Pumps.
 - iii) Compressors.
 - iv) Piping.
 - v) Treatment unit (same building or adjacent building).
 - vi) Etc.
 - (g) Etc.
 - (2) Install extractor/injector nest.
 - (3) Install monitoring point wells.
 - (4) Install PVC vacuum and pressure piping
 - (5) Etc.
 - 3. Operate & maintain
 - a) Establish background parameters for SVVS operations and maintenance.
 - (1) What are the initial BTEX concentration in soil and ground water?
 - (2) What are the initial dissolved oxygen & carbon dioxide concentrations in ground water?
 - (3) What are the initial oxygen & carbon dioxide concentrations in soil?
 - (4) What is the initial pH, dissolved oxygen, & carbon dioxide concentrations in ground water?
 - (5) Determine micro biological organism type & population.

SME MRCS River Seepage Marion, Michigan

, ` ,

Ralph Stephenson, P. E. Consulting Engineer

- (6) Prepare background data base.
- (7) Etc.
- b) Operate and maintain SVVS. will be run by SME until remediation has been achieved type B or C.
 - (1) Set up and run vacuum well withour air injection.
 - (a) Monitor BTEX, oxygen, carbon dioxide flow rate vacuum pressure above water table.
 - (b) Etc.
 - (2) Set up and run vacuum well with air injection.
 - (a) Monitor pH, BTEX, oxygen, carbon dioxide flow rate vacuum pressure & positive pressure above & below water table.
 - (b) Etc.
 - (3) Determine micro biological organism type & population.
 - (4) Establish optimum well location and spacing characteristics.
 - (5) Prepare and publish report documenting SVVS pilot test results.
 - (a) Publish first draft of SVVS pilot test report
 - i) Consumers Power
 - ii) Michigan Gas Storage Company
 - (b) Incorporate comments into first draft of SVVS pilot test report and publish final draft.
 - i) Consumers Power
 - ii) Michigan Gas Storage Company
 - iii) Michigan Department of Natural Resources
 - (6) Etc.
- 4. Verify remediation.
 - a) Sample soil and ground water.
 - b) Analyze soil and ground water for BTEX.
 - c) Publish first draft of remediation closure report. At this point could require a recycling of previous activities.
 - (1) Consumers Power
 - (2) Michigan Gas Storage Company
 - d) Incorporate comments into first draft of remediation closure report and publish final draft.
 - (1) Consumers Power
 - (2) Michigan Gas Storage Company
 - (3) Michigan Department of Natural Resources


94:32

Issue #1 - July 12, 1994 sme mrcs il sht 1

NETWORK MODEL FOR MRCS RIVER SEEPAGE PROJECT

MGSCo.. Marion, Michigan

SME Consultants

- 4. Perform pilot tests of SVVS to determine formation characteristics.
- a) Establish background parameters.
- (1) What are the initial BTEX concentration in soil and ground water?
- (2) What are the initial dissolved oxygen & carbon dioxide concentrations in ground water?
- (3) What are the initial oxygen & carbon dioxide concentrations in soil?
- (4) What is the initial pH, dissolved oxygen, & carbon dioxide concentrations in ground water?
- (5) Determine micro biological organism type & population.
- (6) Prepare background data base.

(7) Etc.

- b) Run pilot tests of SVVS
- (1) Set up and run vacuum well withour air injection.
- (a) Monitor BTEX, oxygen, carbon dioxide flow rate vacuum pressure above water table.
- (b) Etc.
- (2) Set up and run vacuum well with air injection.
- (a) Monitor pH, BTEX, oxygen, carbon dioxide flow rate vacuum pressure & positive pressure above & below water table
- (b) Etc.

÷

- (3) Determine micro biological organism type & population.
- (4) Establish optimum well location and spacing characteristics.
- (5) Prepare and publish report documenting SVVS pilot test results.
- (a) Publish first draft of SVVS pilot test report
- i) Consumers Power
- ii) Michigan Gas Storage Company
- (b) Incorporate comments into first draft of SVVS pilot test report and publish final draft.
- i) Consumers Power
- ii) Michigan Gas Storage Company
- iii) Michigan Department of Natural Resources
- (6) Etc.

.

MRCS River Seepage - Marion, Michigan SME - Consultants

Larry Shook, P. E. Project Manager

| | | | | * - OJ • • | · | • |
|--|---------|---------|---------|------------|---------|----|
| Activity | Phase | 0 9 | e f | ls | lf | d |
| 001-T/R TO JULY 25, 1994 | | 7/25/94 | 7/25/94 | 7/25/94 | 7/25/94 | 0 |
| 016-T/R TO START OF NETWORK MODEL PLAN
ON PCB RELEASE ACTION - 07/25/94 | PCB | 7/25/94 | 7/25/94 | 7/25/94 | 7/25/94 | 0 |
| 003-CPCo PROVIDE SME WITH REVIEW
COMMENTS ON INVESTIGATION REPORT - 5 | P2NT | 7/25/94 | 8/1/94 | 7/25/94 | 8/1/94 | 5 |
| 020-DNR REVIEW & COMMENT ON THE
REMEDIAL INVESTIGATION REPORT - 10 | PCB | 7/25/94 | 8/5/94 | 7/25/94 | 8/5/94 | 10 |
| 002-PREPARE PILOT STUDY WORK PLAN FOR
SOURCE AREA REMEDIATION - 11 | P2NT | 7/25/94 | 8/9/94 | 7/25/94 | 8/9/94 | 11 |
| 006-SME INCORPORATE CPCo COMMENTS
INTO FINAL DRAFT OF SOURCE AREA
INVESTGN REPORT - 10 | P2NT | 8/1/94 | 8/15/94 | 8/1/94 | 8/15/94 | 10 |
| 021-INVESTG POTENTIAL FOR ON-SITE
STKPILG OF PCB IMPACTED SOIL SUFF TO
PROCEED W BTEX REMEDIATION - 22 | РСВ | 8/8/94 | 9/7/94 | 8/8/94 | 9/7/94 | 22 |
| 005-PREPARE & ISSUE DESIGN DOCUMENTS -
1 1 | P2NT | 8/9/94 | 8/24/94 | 8/9/94 | 8/24/94 | 11 |
| 009-SME ASSEMBLE & SUBMIT SOURCE AREA
INVESTIGATION REPORT TO CPC0 - 3 | P2NT | 8/15/94 | 8/18/94 | 8/15/94 | 8/18/94 | 3 |
| 012-CPC0 TRANSMIT SOURCE AREA
INVESTIGATION REPORT TO MDNR - 3 | P2NT | 8/18/94 | 8/23/94 | 8/18/94 | 8/23/94 | 3 |
| 015-MDNR REVIEW & COMMENT ON SOURCE
AREA INVESTIGATION REPORT - 22 | P2NT | 8/23/94 | 9/23/94 | 8/23/94 | 9/23/94 | 22 |
| 010-MOBILIZE & MOVE ON SITE - 1 | P2NT | 8/24/94 | 8/25/94 | 9/22/94 | 9/23/94 | 1 |
| 008-PROCURE & DELIVER WELL SUPPLIES &
MONITORING INSTRUMENTS - 5 | P2NT | 8/24/94 | 8/31/94 | 8/24/94 | 8/31/94 | 5 |
| 007-PURCHASE & DELIVER GAC FILTER,
COMPRESSOR, BLOWER & GENERATOR - 22 | P2NT | 8/24/94 | 9/26/94 | 8/24/94 | 9/26/94 | 22 |
| | <u></u> | - | | [| | L |

_ •

| MRCS River Seepage - Marion, Michigan SME - Consultants | | | | Larry Shook, P. E.
Project Manager | | |
|---|-------|----------|----------|---------------------------------------|----------|----|
| Activity | Phase | 0 9 | e f | 18 | If | d |
| 014-ESTABLISH BACKGROUND PARAMETERS
FOR PILOT TESTING - 11 | P2NT | 8/25/94 | 9/12/94 | 9/23/94 | 10/10/94 | 11 |
| 024-APPLY FOR RESEARCH AND
DEVELOPMENT PERMIT FROM EPA TO
EVALUATE ALTERNATIVE REMEDIAL - 22 | PCB | 9/8/94 | 10/7/94 | 9/8/94 | 10/7/94 | 22 |
| 018-DRILL & INSTL PIPING IN PILOT WELL - 2 | P2NT | 9/12/94 | 9/12/94 | 10/10/94 | 10/10/94 | 0 |
| 019-E T/R TO SET LATE FINISH OF ACTIVITY | P2NT | 9/23/94 | 9/23/94 | 9/23/94 | 9/23/94 | 0 |
| 013-ASSEMBLE SVVS MOBILE UNIT IN
PLYMOUTH 10 | P2NT | 9/26/94 | 10/10/94 | 9/26/94 | 10/10/94 | 10 |
| 017-MOVE SVVS MOBILE UNIT ON SITE &
CONNECT - 1 | P2NT | 10/10/94 | 10/10/94 | 10/10/94 | 10/10/94 | 0 |
| 022-MAKE FINAL CONNECTIONS OF PILOT
WELL & SVVS MOBILE UNIT - 1 | P2NT | 10/10/94 | 10/11/94 | 10/10/94 | 10/11/94 | 1 |
| 026-EPA ISSUE PCB RESEARCH &
DEVELOPMENT PERMIT - 22 - ITEM 8 IN
DECISION TREE | PCB | 10/10/94 | 11/8/94 | 10/10/94 | 11/8/94 | 22 |
| 023-CONDUCT PILOT TESTS WITHOUT & WITH
AIR INJECTION - 10 | P2NT | 10/11/94 | 10/25/94 | 10/11/94 | 10/25/94 | 10 |
| 025-ANALYZE DATA FR PILOT TSTS & ESTAB
WELL LOCATIONS & DETERMINE BACTERIA
TYPE & POPULATION - 10 | P2NT | 10/25/94 | 11/8/94 | 10/25/94 | 11/8/94 | 10 |
| 029AT THIS POINT PHASE 2 LONG TERM WORK
CAN BEGIN (OFF THE END OF THE DIVING
BOARD) | P2LT | 11/8/94 | 11/8/94 | 11/8/94 | 11/8/94 | 0 |
| 032-P2LT? | P2LT | 11/8/94 | 11/8/94 | 11/8/94 | 11/8/94 | 0 |
| 028-PREP & PUBLISH PILOT TEST RESULT
REPORT DRAFT & SUBMIT TO CPCo & MGSCo -
22 | P2NT | 11/8/94 | 12/9/94 | 11/8/94 | 12/9/94 | 22 |
| 027-MAKE FINAL DECISION ON COURSE OF
ACTION TO REMEDIATE PCB - 2 | PCB | 11/9/94 | 11/10/94 | 11/9/94 | 11/10/94 | 2 |
| | | | | | | |

4

î

| MRCS River Seepage - Marion, Michig | gan |
|-------------------------------------|-----|
| SME - Consultants | |

.

Larry Shook, P. E. Project Manager

| Activity | Phase | 0 9 | e f | ls | If | d |
|---|-------|----------|----------|----------|----------|-----|
| 030-CONDUCT PCB PILOT STUDY - 255 | РСВ | 11/11/94 | 11/10/95 | 11/11/94 | 11/10/95 | 255 |
| 031-CPCo & MGSCo REVIEW & COMMENT ON
PILOT TEST REPORT DRAFT - 10 | P2NT | 12/9/94 | 12/23/94 | 12/9/94 | 12/23/94 | 10 |
| 034-SME INCORPORATE CPC0 & MGSC0
COMMENTS INTO FINAL DRAFT OF PILOT STUDY
REPORT - 10 | P2NT | 12/23/94 | 1/10/95 | 12/23/94 | 1/10/95 | 10 |
| 036-SME ASSEMBLE & SUBMIT FINAL DRAFT OF
PILOT STUDY REPORT TO CPCo & MGSCo - 3 | P2NT | 1/10/95 | 1/13/95 | 1/10/95 | 1/13/95 | 3 |
| 037-CPCo TRANSMIT PILOT STUDY REPORT TO
MDNR - 3 | P2NT | 1/13/95 | 1/18/95 | 1/13/95 | 1/18/95 | 3 |
| 038-MDNR REVIEW & COMMENT ON PILOT
STUDY REPORT - 22 | P2NT | 1/18/95 | 2/17/95 | 1/18/95 | 2/17/95 | 22 |
| 039-E T/R TO SET LATE FINISH OF ACTIVITY | P2NT | 2/17/95 | 2/17/95 | 2/17/95 | 2/17/95 | 0 |
| 033-IMPLEMENT FULL ON-SITE TREATMENT OF
PCB IMPACTED AREA - 510 | РСВ | 11/13/95 | 11/11/97 | 11/13/95 | 11/11/97 | 510 |
| 035-E T/R TO SET LATE FINISH OF ACTIVITY | PCB | 11/11/97 | 11/11/97 | 11/11/97 | 11/11/97 | 0 |